Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Int J Neonatal Screen ; 10(1)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535129

RESUMO

The Portuguese Neonatal Screening Program (PNSP) conducts nationwide screening for rare diseases, covering nearly 100% of neonates and screening for 28 disorders, including 24 inborn errors of metabolism (IEMs). The study's purpose is to assess the epidemiology of the screened metabolic diseases and to evaluate the impact of second-tier testing (2TT) within the PNSP. From 2004 to 2022, 1,764,830 neonates underwent screening using tandem mass spectrometry (MS/MS) to analyze amino acids and acylcarnitines in dried blood spot samples. 2TT was applied when necessary. Neonates with profiles indicating an IEM were reported to a reference treatment center, and subsequent biochemical and molecular studies were conducted for diagnostic confirmation. Among the screened neonates, 677 patients of IEM were identified, yielding an estimated birth prevalence of 1:2607 neonates. The introduction of 2TT significantly reduced false positives for various disorders, and 59 maternal cases were also detected. This study underscores the transformative role of MS/MS in neonatal screening, emphasizing the positive impact of 2TT in enhancing sensitivity, specificity, and positive predictive value. Our data highlight the efficiency and robustness of neonatal screening for IEM in Portugal, contributing to early and life-changing diagnoses.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38111112

RESUMO

INTRODUCTION: Single Nucleotide Polymorphisms (SNPs) are used as drug susceptibility biomarkers in metabolic diseases. Alterations in the gene encoding triggers the enzyme flavin monooxygenase 3 (FMO3), involved in the Sulindac metabolization, which also is responsible for the inherited metabolic disorder. Trimethylaminuria (TMAu, OMIM: 602079). DPYD gene variants are associated with the enzyme dihydropyrimidine dehydrogenase deficiency (DPD; OMIM: 274270). This autosomal recessive metabolic disorder, ultimately leads to the inability to metabolize fluoropyrimidines, which causes severe toxicity in individuals treated with these drugs. METHODS: Variants in genes responsible for the expression of enzymes that encode transporters or receptors involved in the metabolization pathways of certain drugs may condition the individuals response to certain drugs, compromising the therapeutic response and clinical prognosis. Thus the sequencing and identification of variants become relevant, not only gain knowledge on effects of these variants' on disease causality but also in terms of its side effects resulting from the coding enzymes responsible for drug metabolization. RESULTS: It was found that patients with the c.472G>A (p.Glu158Lys) and c.923A>G (p.Glu308Gly) polymorphisms, in homozygosity, in FMO3 gene did not develop polyps, thus have a protective effect in the treatment of Familial Adenomatous Polyposis (PAF). However, in the case of the DPYD gene, c.1905+1G>A (IVS14+1G>A), c.1679T>G (p.Ile560Ser), c.2846A>T (p.Asp949Val) e c.1236G>A/HapB3 variants can be lethal in cancer patients indicated for fluoropyrimidine-based chemotherapy. CONCLUSION: Knowledge on the drug mechanisms will affect the therapeutic response of patients treated with a given drug. Thus, pharmacogenetics is an essential tool in personalized medicine, since molecular studies allows the clinician to predict the probability of efficacy and toxicity of certain drugs, resulting higher efficiency in individualizing treatment and also improving the safety of the patient. From a personalized medicine perspective, the study of the characteristics of the drug and its metabolization site, the genes involved in the encoding of enzymes responsible for its metabolization will be of great interest.

4.
Chronobiol Int ; 40(12): 1523-1528, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37985469

RESUMO

The objective of this study was to assess the value of the abnormal circadian blood pressure pattern by ambulatory blood pressure monitoring (ABPM) to predict the onset of abnormal albuminuria in normotensive and normoalbuminuric DM1 patients. The participators were submitted to ABPM and followed prospectively until the onset of albuminuria or the end of follow-up. The patients with normal circadian blood pressure pattern were compared with the non-dippers in regard of the time interval free of albuminuria. The survival curves were evaluated by the Kaplan-Meier method. Of 34 patients screened, 10 patients matched the exclusion criteria. Therefore, 24 patients were submitted to ABPM, aged 24 ± 8.3 y, 18 men, and all Caucasian. Elevated levels of albuminuria did not occurin any individual with normal systolic blood pressure dip (>10%) at 54 months of follow-up. Only 22% of patients among non-dippers were free of albuminuria (<30 mg/g maintained for 3 months) at the same time (p = 0.049). Patients that reached the outcome were homogeneous in regard to other clinical and ABPM data evaluated. Abnormal systolic blood pressure circadian pattern predicts the evolution to incipient nephropathy in normotensive normoalbuminuric DM1 patients.


Assuntos
Diabetes Mellitus Tipo 1 , Hipertensão , Nefropatias , Masculino , Humanos , Pressão Sanguínea/fisiologia , Albuminúria , Monitorização Ambulatorial da Pressão Arterial , Ritmo Circadiano/fisiologia
5.
Cureus ; 15(10): e48017, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38034150

RESUMO

Methylmalonyl coenzyme A (CoA) epimerase (MCE) converts D-methylmalonyl-CoA into L-methylmalonyl CoA in the final common degradation pathway of valine, isoleucine, methionine, threonine, odd-chain fatty acids, and cholesterol side chains. Methylmalonyl-CoA epimerase deficiency is an ultra-rare autosomal recessive disorder where methylmalonic acid, methylcitrate, 3-hydroxypropionate, and propionylcarnitine are accumulated. We describe two novel pediatric patients and review the previously reported cases of MCE deficiency. Including our two novel patients, at least 24 cases of MCE deficiency have been described, with a broad clinical spectrum ranging from asymptomatic to severely neurologically impaired patients. Our patients are siblings of Arabic origin who presented with metabolic decompensation with coma and epilepsy during infancy. Methylmalonic aciduria was disclosed, L-methylmalonyl-CoA mutase deficiency was assumed, and they were treated accordingly. When first seen in our country, aged 10 and four years, respectively, both presented severe intellectual disability and spasticity. The younger had an ataxic gait, and the older was wheelchair-ridden. The study of the MMUT, MMAA, MMAB, and MMADHC genes was normal. Subsequently, the pathogenic variant c.139C>T (p.Arg47*) in the MCEE gene was identified in homozygosity in both patients, leading to the diagnosis of MCE deficiency (Online Mendelian Inheritance in Man (OMIM®) 251120, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, MD, USA). Most patients were homozygous for that variant (83% of the alleles). Correct diagnosis allowed treatment adequacy and genetic counseling. Methylmalonyl-CoA epimerase deficiency shares a similar biochemical profile with other rare genetic disorders. Patients present with overlapping clinical features with predominant neurological manifestations; genetic testing is indispensable for diagnosis. We found no association between genotype and biochemical and clinical phenotypes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37711114

RESUMO

Introduction - SERAC1 deficiency phenotype range from MEGD(H)EL syndrome, the most severe, to juvenile complicated spastic paraplegia, to adult-onset dystonic features (in only one patient). The MEGD(H)EL syndrome is characterized by (3-methylglutaconic aciduria with deafness-dystonia, [hepatopathy], encephalopathy, and Leigh-like syndrome). Biochemical abnormalities: elevated urinary 3 - metilglutaconic and 3-metilglutaric acids, high lactate and alanine in serum. Diagnosis is confirmed when biallelic pathogenic variants in SERAC1 gene are found. Brain MRI: basal ganglia lesions and generalized atrophy. Results/Case report - A 30-year-old patient with a moderate intellectual disability, developed, since the age of 25, a progressive loss of previous capacities (hand dexterity, oral language), and later subacute generalized dystonic features. Currently he has spastic tetraparesis, dystonia, scoliosis and autistic behavior, with bilateral basal ganglia lesions on brain MRI. Genetic study revealed biallelic pathogenic variants in SERAC1 gene, confirm MEGD(H)EL. A 73 years old patient with cognitive impairment and progressive spastic tetraparesis had multiple periventricular T2 hyperintense lesions. She has a homozygotic SERAC1 variant NM_032861: exon4:c.T139A: p.F471 (rs112780453), considered benign. Biochemical study revealed elevated plasmatic alanine and urinary3-metilglutaconic and 3-metilglutaric acid. This profile is concordant with mitochondrial dysfunction and SERAC1 Deficit. Conclusion - The first patient has the clinical symptoms associated to the MEGD(H)EL syndrome, and the biochemical and genetic confirmation of the diagnosis, without reservations. However, in the second patient, the progressive paraparesis and cognitive impairment did not appear to be caused by multiple sclerosis nor subcortical vascular leukoencephalopathy (without vascular risk factors). The abnormal biochemical profile is suggestive of SERAC1 Deficiency, even without genetic confirmation. In what should we believe?

7.
Artigo em Inglês | MEDLINE | ID: mdl-37711117

RESUMO

INTRODUCTION: The Portuguese Neonatal Screening Programme (PNSP) identifies patients with rare diseases through nationwide screening. Currently, 27 diseases are diagnosed, amongst which are 24 Inborn Errors of Metabolism (IEM), covering approximately 100% of neonates (1). In 2004, the national laboratory implemented a new screening method, tandem mass spectrometry (MS/MS) to test for amino acids and acylcarnitines. This new protocol revolutionized the PNSP and allowed for the analysis of an increased number of IEM, with clear improvements in treatment timings and clinical outcomes (2). METHODS: From 2004 to 2022, 1 764 830 neonates were screened with MS/MS technology. Those who displayed biochemical profiles indicating an IEM were subjected to molecular characterization via genomic DNA extraction, PCR amplification, and direct Sanger sequencing method of dried blood spot samples. RESULTS/CASE REPORT: A cohort of 681 newborns were diagnosed with an IEM. MCAD deficiency is the most frequent, with 233 confirmed diagnoses, showing predominantly c.985A>G (p.K329E) mutation of the ACADM gene in homozygosity. Approximately 1/3 of the 33 confirmed cases of Glutaric Aciduria type I present homozygous for the c.1204C>T (p.Arg402Trp) mutation in GCDH. Around 60% of cases of MAT II/III deficiency display the dominant mutation of the MAT1A gene, c.791G>A (p.Arg264His). These genetic profiles and others were determined as diagnostic confirmation for 24 of the IEM screened. CONCLUSION: This data shows the molecular epidemiology of patients with confirmed IEM diagnosis identified by neonatal screening. Some diseases out of the scope of the PNSP were also detected as a differential diagnosis after biochemical suspicion in the dried blood spot sample. The retrospective analysis of the PNSP allows for an overview of 18 years of achievements accomplished by the national screening for IEM since MS/MS was implemented. For some pathologies with low incidence, it's difficult to trace a discernible pattern. However, presenting de novo mutations for these diseases might provide insights on how to approach different phenotypes. The aim of this work is to establish the molecular epidemiology of metabolic diseases screened.

8.
Genes (Basel) ; 14(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37628588

RESUMO

Mitochondrial diseases are the most common inherited inborn error of metabolism resulting in deficient ATP generation, due to failure in homeostasis and proper bioenergetics. The most frequent mitochondrial disease manifestation in children is Leigh syndrome (LS), encompassing clinical, neuroradiological, biochemical, and molecular features. It typically affects infants but occurs anytime in life. Considering recent updates, LS clinical presentation has been stretched, and is now named LS spectrum (LSS), including classical LS and Leigh-like presentations. Apart from clinical diagnosis challenges, the molecular characterization also progressed from Sanger techniques to NGS (next-generation sequencing), encompassing analysis of nuclear (nDNA) and mitochondrial DNA (mtDNA). This upgrade resumed steps and favored diagnosis. Hereby, our paper presents molecular and clinical data on a Portuguese cohort of 40 positive cases of LSS. A total of 28 patients presented mutation in mtDNA and 12 in nDNA, with novel mutations identified in a heterogeneous group of genes. The present results contribute to the better knowledge of the molecular basis of LS and expand the clinical spectrum associated with this syndrome.


Assuntos
Doença de Leigh , Criança , Lactente , Humanos , Doença de Leigh/genética , Portugal , DNA Mitocondrial/genética , Mitocôndrias , Evolução Biológica
9.
Parkinsonism Relat Disord ; 111: 105408, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105015

RESUMO

INTRODUCTION: The diagnostic approach for adulthood parkinsonism can be challenging when atypical features hamper its classification in one of the two main parkinsonian groups: Parkinson's disease or atypical parkinsonian syndromes (APS). Atypical features are usually associated with non-sporadic neurodegenerative causes. METHODS: Retrospective analysis of patients with a working clinical diagnosis of "atypical" APS and complex parkinsonism. "Atypical" APS were classified according to the diagnostic research criteria and the "4-step diagnostic approach" (Stamelou et al. 2013). When not indicated, the final aetiological diagnosis was prospectively assessed. Brain MRI of progressive supranuclear palsy (PSP) look-alikes was reviewed by a neuroradiologist. RESULTS: Among 18 patients enrolled, ten were assigned to the "atypical" APS and eight to the complex parkinsonism group. In the "atypical" APS group, nine patients had PSP and one had corticobasal degeneration. In the PSP group the median magnetic resonance parkinsonism index was 17.1. A final aetiological diagnosis was established for 11 patients, four from the complex parkinsonism (L-2-hidroxiglutaric aciduria and DiGeorge syndrome) and seven from the "atypical" APS (Perry syndrome, postencephalitic PSP, vascular PSP, and MTP-AT6 mitochondrial disease) group. CONCLUSIONS: In this study, the identification of atypical APS features, as proposed in the "4-step diagnostic approach", successfully guided the investigation of alternative diagnoses. Distinctive non-neurodegenerative etiologies causing "atypical" atypical and complex parkinsonism were uncovered, including acquired (post-encephalitis and vascular) and genetic (MTP-AT6 mitochondrial disease mimicking PSP, described for the first time) ones. In the future, accurate clinical identification and distinction between neurodegenerative and non-neurodegenerative parkinsonism etiologies will allow for refining clinical trials.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Adulto , Estudos Retrospectivos , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética , Doença de Parkinson/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/genética , Depressão , Diagnóstico Diferencial
10.
Artigo em Inglês | MEDLINE | ID: mdl-36642213

RESUMO

The anti-obesity thyroid hormone, triiodothyronine (T3), and irisin, an exercise- and/or cold-induced myokine, stimulate thermogenesis and energy consumption while decreasing lipid accumulation. The involvement of ATP signaling in adipocyte cell function and obesity has attracted increasing attention, but the crosstalk between the purinergic signaling cascade and anti-obesity hormones lacks experimental evidence. In this study, we investigated the effects of T3 and irisin in the transcriptomics of membrane-bound purinoceptors, ectonucleotidase enzymes and nucleoside transporters participating in the purinergic signaling in cultured human adipocytes. The RNA-seq analysis revealed that differentiated adipocytes express high amounts of ADORA1, P2RY11, P2RY12, and P2RX6 gene transcripts, along with abundant levels of transcriptional products encoding to purine metabolizing enzymes (ENPP2, ENPP1, NT5E, ADA and ADK) and transporters (SLC29A1, SCL29A2). The transcriptomics of purinergic signaling markers changed in parallel to the upsurge of "browning" adipocyte markers, like UCP1 and P2RX5, after treatment with T3 and irisin. Upregulation of ADORA1, ADORA2A and P2RX4 gene transcription was obtained with irisin, whereas T3 preferentially upregulated NT5E, SLC29A2 and P2RY11 genes. Irisin was more powerful than T3 towards inhibition of the leptin gene transcription, the SCL29A1 gene encoding for the ENT1 transporter, the E-NPP2 (autotaxin) gene, and genes that encode for two ADP-sensitive P2Y receptors, P2RY1 and P2RY12. These findings indicate that anti-obesity irisin and T3 hormones differentially affect the purinergic signaling transcriptomics, which might point towards new directions for the treatment of obesity and related metabolic disorders that are worth to be pursued in future functional studies.


Assuntos
Fibronectinas , Transcriptoma , Tri-Iodotironina , Humanos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA-Seq , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo
11.
Arch. endocrinol. metab. (Online) ; 66(6): 871-882, Nov.-Dec. 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403245

RESUMO

ABSTRACT Primary hypothyroidism is a common disorder in clinical practice. The management of most cases of hypothyroidism is usually straightforward, but the best approach in some special situations may raise questions among physicians. This position statement was prepared by experts from the Brazilian Society of Endocrinology and Metabolism to guide the management of three special situations, namely, hypothyroidism in the elderly, subclinical hypothyroidism in patients with heart disease, and difficult-to-control hypothyroidism. The authors prepared the present statement after conducting a search on the databases MEDLINE/PubMed, LILACS, and SciELO and selecting articles with the best evidence quality addressing the selected situations. The statement presents information about the current approach to patients in these special situations.

12.
Arch Endocrinol Metab ; 66(6): 871-882, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394484

RESUMO

Primary hypothyroidism is a common disorder in clinical practice. The management of most cases of hypothyroidism is usually straightforward, but the best approach in some special situations may raise questions among physicians. This position statement was prepared by experts from the Brazilian Society of Endocrinology and Metabolism to guide the management of three special situations, namely, hypothyroidism in the elderly, subclinical hypothyroidism in patients with heart disease, and difficult-to-control hypothyroidism. The authors prepared the present statement after conducting a search on the databases MEDLINE/PubMed, LILACS, and SciELO and selecting articles with the best evidence quality addressing the selected situations. The statement presents information about the current approach to patients in these special situations.


Assuntos
Hipotireoidismo , Adulto , Humanos , Idoso , Brasil
13.
Front Cell Dev Biol ; 10: 886136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784485

RESUMO

Background: Thyroid hormones play a significant role in bone development and maintenance, with triiodothyronine (T3) particularly being an important modulator of osteoblast differentiation, proliferation, and maintenance. However, details of the biological processes (BPs) and molecular pathways affected by T3 in osteoblasts remain unclear. Methods: To address this issue, primary cultures of human adipose-derived mesenchymal stem cells were subjected to our previously established osteoinduction protocol, and the resultant osteoblast-like cells were treated with 1 nm or 10 nm T3 for 72 h. RNA sequencing (RNA-Seq) was performed using the Illumina platform, and differentially expressed genes (DEGs) were identified from the raw data using Kallisto and DESeq2. Enrichment analysis of DEGs was performed against the Gene Ontology Consortium database for BP terms using the R package clusterProfiler and protein network analysis by STRING. Results: Approximately 16,300 genes were analyzed by RNA-Seq, with 343 DEGs regulated in the 1 nm T3 group and 467 upregulated in the 10 nm T3 group. Several independent BP terms related to bone metabolism were significantly enriched, with a number of genes shared among them (FGFR2, WNT5A, WNT3, ROR2, VEGFA, FBLN1, S1PR1, PRKCZ, TGFB3, and OSR1 for 1nM T3; and FZD1, SMAD6, NOG, NEO1, and ENG for 10 nm T3). An osteoblast-related search in the literature regarding this set of genes suggests that both T3 doses are unfavorable for osteoblast development, mainly hindering BMP and canonical and non-canonical WNT signaling. Conclusions: Therefore, this study provides new directions toward the elucidation of the mechanisms of T3 action on osteoblast metabolism, with potential future implications for the treatment of endocrine-related bone pathologies.

14.
Reprod Toxicol ; 112: 7-13, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714933

RESUMO

The placenta is a temporary organ that plays critical roles at the maternal-fetal interface. Normal development and function of the placenta is dependent on hormonal signaling pathways that make the placenta a target of endocrine disrupting chemical (EDC) action. Studies showing association between prenatal exposure, hormone disruption, and reproductive damage indicate that EDCs are developmentally toxic and can impact future generations. In this context, new placental models (trophoblast-derived cell lines, organotypic or 3D cell models, and physiologically based kinetic models) have been developed in order to create new approach methodology (NAM) to assess and even prevent such disastrous toxic harm in future generations. With the widespread discouragement of conducting animal studies, it has become irrefutable to develop in vitro models that can serve as a substitute for in vivo models. The goal of this review is to discuss the newest in vitro models to understand the maternal-fetal interface and predict placental development, physiology, and dysfunction generated by failures in molecular hormone control mechanisms, which, consequently, may change epigenetic programming to increase susceptibility to metabolic and other disorders in the offspring. We summarize the latest placental models for developmental toxicology studies, focusing mainly on three-dimensional (3D) culture models.


Assuntos
Desenvolvimento Fetal , Placenta , Animais , Feminino , Desenvolvimento Fetal/fisiologia , Hormônios/metabolismo , Placenta/metabolismo , Placentação , Gravidez , Trofoblastos
16.
Front Mol Biosci ; 8: 614728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820418

RESUMO

The SARS-CoV-2 is the causative agent of the COVID-19 pandemic. The data available about COVID-19 during pregnancy have demonstrated placental infection; however, the mechanisms associated with intrauterine transmission of SARS-CoV-2 is still debated. Intriguingly, while canonical SARS-CoV-2 cell entry mediators are expressed at low levels in placental cells, the receptors for viruses that cause congenital infections such as the cytomegalovirus and Zika virus are highly expressed in these cells. Here we analyzed the transcriptional profile (microarray and single-cell RNA-Seq) of proteins potentially interacting with coronaviruses to identify non- canonical mediators of SARS-CoV-2 infection and replication in the placenta. Despite low levels of the canonical cell entry mediators ACE2 and TMPRSS2, we show that cells of the syncytiotrophoblast, villous cytotrophoblast, and extravillous trophoblast co-express high levels of the potential non-canonical cell-entry mediators DPP4 and CTSL. We also found changes in the expression of DAAM1 and PAICS genes during pregnancy, which are translated into proteins also predicted to interact with coronaviruses proteins. These results provide new insight into the interaction between SARS-CoV-2 and host proteins that may act as non-canonical routes for SARS-CoV-2 infection and replication in the placenta cells.

17.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638557

RESUMO

Chronic myeloid leukemia (CML), a hematopoietic neoplasm arising from the fusion of BCR (breakpoint cluster region) gene on chromosome 22 to the ABL (Abelson leukemia virus) gene on chromosome 9 (BCR-ABL1 oncogene), originates from a small population of leukemic stem cells with extensive capacity for self-renewal and an inflammatory microenvironment. Currently, CML treatment is based on tyrosine kinase inhibitors (TKIs). However, allogeneic hematopoietic stem cell transplantation (HSCT-allo) is currently the only effective treatment of CML. The difficulty of finding a compatible donor and high rates of morbidity and mortality limit transplantation treatment. Despite the safety and efficacy of TKIs, patients can develop resistance. Thus, microRNAs (miRNAs) play a prominent role as biomarkers and post-transcriptional regulators of gene expression. The aim of this study was to analyze the miRNA profile in CML patients who achieved cytogenetic remission after treatment with both HSCT-allo and TKI. Expression analyses of the 758 miRNAs were performed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Bioinformatics tools were used for data analysis. We detected miRNA profiles using their possible target genes and target pathways. MiR-125a-3p stood out among the downregulated miRNAs, showing an interaction network with 52 target genes. MiR-320b was the only upregulated miRNA, with an interaction network of 26 genes. The results are expected to aid future studies of miRNAs, residual leukemic cells, and prognosis in CML.


Assuntos
Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/metabolismo , Adulto , Biologia Computacional , Regulação para Baixo/efeitos dos fármacos , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Mapas de Interação de Proteínas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Biomedicines ; 9(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064479

RESUMO

The electron-transfer flavoprotein dehydrogenase gene (ETFDH) encodes the ETF-ubiquinone oxidoreductase (ETF-QO) and has been reported to be the major cause of multiple acyl-CoA dehydrogenase deficiency (MADD). In this study, we present the clinical and molecular diagnostic challenges, at the DNA and RNA levels, involved in establishing the genotype of four MADD patients with novel ETFDH variants: a missense variant, two deep intronic variants and a gross deletion. RNA sequencing allowed the identification of the second causative allele in all studied patients. Simultaneous DNA and RNA investigation can increase the number of MADD patients that can be confirmed following the suggestive data results of an expanded newborn screening program. In clinical practice, accurate identification of pathogenic mutations is fundamental, particularly with regard to diagnostic, prognostic, therapeutic and ethical issues. Our study highlights the importance of RNA studies for a definitive molecular diagnosis of MADD patients, expands the background of ETFDH mutations and will be important in providing an accurate genetic counseling and a prenatal diagnosis for the affected families.

19.
Arch Endocrinol Metab ; 65(2): 198-211, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33905633

RESUMO

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Our objective was to evaluate the efficacy of exercise interventions in DPN patients from randomized controlled trials. The primary outcomes were the risk of falls, fear of falling, balance and quality of life. Two reviewers independently selected studies from Embase, Medline, LILACS, CENTRAL, and PEDro. They assessed the risk of bias and extracted data from the trials. The relative risk (RR) and the differences between means (MD) were calculated with a 95% confidence interval (CI) and used as the effect size. We used a random-effects model to pool results across studies, and the Grading of Recommendations Assessment, Development, and Evaluation system to evaluate the certainty of evidence. Eight trials were included. No clear effect was observed in the risk of falls (RR: 0.93, 95% CI: 0.41 to 2.09, 79 participants, 1 trial, low-certainty evidence). Regarding fear of falling, using the Falls Efficacy Scale, a small difference in favor of the intervention was observed (MD: -2.42, 95%, CI: -4.7 to -0.15, 3 trials, 185 participants, low-certainty evidence). The meta-analysis of balance using the unipedal stance test showed a small difference in favor of the intervention. One study evaluated quality of life, and in the mental score there was a MD in favor of the intervention. In DPN patients, a combination of gait, balance, and functional training improved balance, the fear of falling, quality of life in the mental score, but not the risk of falls.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Acidentes por Quedas/prevenção & controle , Exercício Físico , Medo , Humanos , Qualidade de Vida
20.
Front Oncol ; 10: 1544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014798

RESUMO

Chronic myeloid leukemia (CML) results from a translocation between chromosomes 9 and 22, which generates the Philadelphia chromosome. This forms BCR/ABL1, an active tyrosine kinase protein that promotes cell growth and replication. Despite great progress in CML treatment in the form of tyrosine kinase inhibitors, allogeneic-hematopoietic stem cell transplantation (allo-HSCT) is currently used as an important treatment alternative for patients resistant to these inhibitors. Studies have shown that unregulated expression of microRNAs, which act as oncogenes or tumor suppressors, is associated with human cancers. This contributes to tumor formation and development by stimulating proliferation, angiogenesis, and invasion. Research has demonstrated the potential of microRNAs as biomarkers for cancer diagnosis, prognosis, and therapeutic targets. In the present study, we compared the circulating microRNA expression profiles of 14 newly diagnosed patients with chronic phase-CML and 14 Philadelphia chromosome-negative patients after allo-HSCT. For each patient, we tested 758 microRNAs by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis. The global expression profile of microRNAs revealed 16 upregulated and 30 downregulated microRNAs. Target genes were analyzed, and key pathways were extracted and compared. Bioinformatics tools were used to analyze data. Among the downregulated miRNA target genes, some genes related to cell proliferation pathways were identified. These results reveal the comprehensive microRNA profile of CML patients and the main pathways related to the target genes of these miRNAs in cytogenetic remission after allo-HSCT. These results provide new resources for exploring stem cell transplantation-based CML treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...